Speedy Magnetite Switch Makes Blink of an Eye Seem Poky

Researchers using the United States Department of Energy’s SLAC National Accelerator Laboratory at Stanford University have created an experimental switch that goes between on and off in one trillionth of a second.

This was done by blasting samples of magnetite with a laser to rearrange their atomic structure.

optical laser pulse

An optical laser pulse (red streak from upper right) shatters the ordered electronic structure (blue) in an insulating sample of magnetite, switching the material to electrically conducting (red) in one trillionth of a second. (Credit: Greg Stewart/SLAC)

The scientists then used ultrabright, ultrashort X-ray pulses to measure how long it took for the switch to go from off to on.

The experiment is one of several undertaken by researchers worldwide to find an alternative to silicon as the semiconductor industry runs up against the limits of Moore’s Law, Jim McGregor, principal analyst at Tirias Research, told TechNewsWorld.

“We’re running up against size and cost limitations and will have to eventually move beyond silicon,” McGregor said. “What and when that will be is highly debatable, but by 2025 it may be a requirement.”

What the Researchers Did

The researchers first cooled samples of magnetite to -190 degrees Celsius to lock their electrical charges in place.

They then used a visible-light laser on the samples of magnetite to fragment their electronic structure at the atomic scale.

This rearranged the structure to form non-conducting “islands” surrounded by electrically conducting regions, which formed hundreds of quadrillionths of a second after the laser beam hit.


The scientists then used SLAC’s Linac Coherent Light Source X-ray laser to direct ultrabright, ultrashort X-ray pulses at the magnetite to study the timing and details of changes in the samples following the laser pulse.

Adjusting the intervals of the X-ray pulses let the researchers measure how long it took the magnetite to shift from an off state to an on state, and observe the structural changes that occurred when it happened.

Developing high-speed switches identifies the fundamental materials processes driving the switches, among other things, Herman Durr, principal investigator of the LCLS experiment, told TechNewsWorld. “There are often competing processes that happen on different timescales that can be studied and ultimately controlled this way.”

The Next Steps

The researchers are conducting follow-up studies on high-quality, ultra-thin structures of Vanadium dioxide, which demonstrates an insulator-metal transition above room temperatures, Durr said.

In other words, they work as on-off switches above room temperatures, which makes them more practical than magnetite.

Using oxides in transistors could make them more efficient, but the industry needs to go beyond semiconductors, Durr said. “My group, myself and many other researchers … want to understand the non-equilibrium phases that are generated by laser or electric field excitation of oxide materials. There, something new could happen that could be useful for IT, [and] our article is the first inkling of this.”


3 thoughts on “Speedy Magnetite Switch Makes Blink of an Eye Seem Poky

  1. This put up appears to be to be able to recieve a massive ammount of visitors. How can you get targeted prospects to it? It gives a pleasant excellent spin in points. I assume possessing anything at all authentic or even substantial to speak about is the most important aspect.

  2. Thanks for the marvelous posting! I actually enjoyed reading it, you’re a great author.I will be sure to bookmark your blog and will often come back very soon. I want to encourage one to continue your great work, have a nice weekend!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s